We describe a module for the Athena code that solves the gray equations of radiation hydrodynamics (RHD), based on the first two moments of the radiative transfer equation. We use a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We adopt the M1 closure relation and include all leading source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. Our code is dimensionally unsplit in one, two, and three space dimensions and is parallelized using MPI. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for a problem with a concentrated radiation source containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal. We present an analysis of the dispersion relation of RHD linear waves highlighting the conditions of applicability for the RSLA. To demonstrate the accuracy of our method, we utilize a suite of radiation and RHD tests covering a broad range of regimes, including RHD waves, shocks, and equilibria, which show second-order convergence in most cases. As an application, we investigate radiation-driven ejection of a dusty, optically thick shell in the interstellar medium (ISM). Finally, we compare the timing of our method with other well-known iterative schemes for the RHD equations. Our code implementation, Hyperion, is suitable for a wide variety of astrophysical applications and will be made freely available on the Web.
Read full abstract