PurposeThis research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types, manufacturing processes, materials and service conditions. It also focuses on prominent defects and challenges related to heavy transportation conditions, particularly low live haul reserves and severe fatigue problems.Design/methodology/approachThe study encompasses three key aspects: (1) Adaptability assessment: It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses, experiments and engineering applications. (2) Strengthening: To combat frequent crack defects in the vertical stiffener end structure of girder webs, fatigue performance tests and reinforcement scheme experiments were conducted. These experiments included the development of a hot-spot stress S-N curve for this structure, validating the effectiveness of methods like crack stop holes, ultrasonic hammering and flange angle steel. (3) Service life extension: Research on the cruciform welded joint structure (non-fusion transfer type) focused on fatigue performance over the long life cycle. This led to the establishment of a fatigue S-N curve, enhancing Chinese design codes.FindingsThe research achieved several significant outcomes: (1) Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line. (2) Post-reinforcement, a substantial 26% to 32% reduction in live haul stress on bridge members was achieved. (3) The strengthening and retrofitting efforts met design expectations, enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.Originality/valueThis research systematically tackles challenges and defects associated with Chinese existing railway steel bridges, providing valuable insights into adaptability assessment, strengthening techniques and service life extension methods. Furthermore, the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.
Read full abstract