In this study, a multi-linear constitutive relation taking into account temperature and fiber bridging is proposed for characterizing delamination behavior in composite laminates under various temperature conditions. An approach combining analytical solution and J-integral is also established for determining the cohesive parameters in the multi-linear constitutive relation. To validate the proposed constitutive relation, mode I quasi-static delamination experiments of unidirectional (UD) and multidirectional (MD) carbon/bismaleimide laminates are carried out at 25 ℃ (room temperature), 80 °C and 130 ℃. The experimental results show that the increasing temperature resulted in a monotonic increase in the fracture toughness of the UD laminates while affect the fracture toughness of MD laminates slightly. A FE model is established with the implementation of the proposed multi-linear constitutive relation using UMAT subroutine. Good agreements between the experimental and simulated results demonstrate the validity of the proposed constitutive relation, with the relative difference of peak load between predicted and experimental values less than 8.2 % and the relative difference of initial and steady-state fracture toughness between predicted and tested results less than 15 %. This study provides the possibility to numerically study the temperature effect on the delamination behavior of laminates and has promising applications in the damage tolerance design of composite structures.
Read full abstract