Motivated by assembly processes, we consider a Markovian queueing system with multiple coupled queues and customer impatience. Coupling means that departures from all constituent queues are synchronised and that service is interrupted whenever any of the queues is empty and only resumes when all queues are non-empty again. Even under Markovian assumptions, the state–space grows exponentially with the number of queues involved. To cope with this inherent state–space explosion problem, we investigate performance by means of two numerical approximation techniques based on series expansions, as well as by deriving the fluid limit. In addition, we provide closed-form expressions for the first terms in the series expansion of the mean queue content for the symmetric coupled queueing system. By an extensive set of numerical experiments, we show that the approximation methods complement each other, each one being accurate in a particular subset of the parameter space.
Read full abstract