We have undertaken a statistical study of the component mass ratios and the orbital eccentricities of WR + O close binary, detached main-sequence (DMS), contact early-type (CE), and semidetached (SD) systems. A comparison of the characteristics of WR + O systems and of DMS, CE, and SD systems has enabled us to draw certain conclusions about the evolutionary paths of WR + O binaries and to demonstrate that up to 90% of all known WR + O binaries formed as a result of mass transfer in massive close O + O binary systems. Since there is a clear correlation between the component masses in SD systems with subgiants, the absence of an anticorrelation between the masses of the WR stars and O stars in WR + O binaries cannot be considered evidence against the formation of WR + O binaries via mass transfer. The spectroscopic transitional orbital period P tr sp corresponding to the transition from nearly circular orbits (e sp<0.1) to elliptical orbits (e sp≥0.1) is ∼14d for WR + O systems and ∼2d–3d for OB + OB systems. The period range in which all WR + O orbits are circular \((1\mathop d\limits_. 6 \leqslant P \leqslant 14^d )\) is close to the range for SD systems with subgiants, \(0\mathop d\limits_. 7 \leqslant P \leqslant 15^d \). The large difference between the P tr sp values for WR + O and OB + OB systems suggests that a mechanism of orbit circularization additional to that for OB + OB systems at the DMS stage (tidal dissipation of the orbital energy due to radiative damping of the dynamical tides) acts in WR + O binaries. It is natural to suggest mass transfer in the parent O + O binaries as this supplementary orbit-circularization mechanism. Since the transitional period between circular and elliptical orbits for close binaries with convective envelopes and ages of 5×109 years is \(P_{tr} = 12\mathop d\limits_. 4\), the orbits of most known SD systems with subgiants had enough time to circularize during the DMS stage, prior to the mass transfer. Thus, for most SD systems, mass transfer plays a secondary role in circularization of their orbits.
Read full abstract