Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.
Read full abstract