To improve the handling and stability of four-wheel independent drive electric vehicles (FWID EVs), this paper introduces a hierarchical architecture lateral stability control system. The upper-level controller is responsible for generating the additional yaw moment required by the vehicle. This includes a control strategy based on feedforward control and a Linear Quadratic Regulator (LQR) for handling assistance control, an LQR-based stability control, a PID controller-based speed-following control, and a stability assessment method. The lower-level controller uses Quadratic Programming (QP) to optimally distribute the additional yaw moment to the four wheels. A “normalized” method was proposed to determine vehicle stability. After comparing it with the existing double-line method, diamond method, and curved boundary method through the open-loop Sine with Dwell test and the closed-loop Double Lane Change (DLC)test simulation, the results demonstrate that this method is more sensitive and accurate in determining vehicle stability, significantly enhancing vehicle handling and stability.
Read full abstract