This paper investigates the new stability criteria for the asymptotic stability of time-delay systems via integral inequalities and Jensen inequalities. Firstly, not only the known constant time delay, but also the unknown time-varying delay is considered for the linear system. Secondly, the new delay-dependent Lyapunov–Krasovskii functional based on the double integral inequalities and Jensen inequalities is introduced, such that the linear system with time-delay is asymptotically stable. Thirdly, two classes of delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) are derived, such that the control design conditions are relaxed and computation complexity is reduced. Compared with previous works, the larger feasible solution region and less conservative results are obtained. Finally, some numerical examples are performed to show the effectiveness and advantage of the proposed method.
Read full abstract