Effects of simulated acid rain, comprised of HNO3 and H2SO4 in the mole ratio of 3:1, at pH 5.6, 4.5, 4.0 and 3.0, were tested on the grass, soft chess (Bromus mollis L.) and on clover (Trifolium subterraneum L. var. Woogenellup) in a sandy soil of granodiorite parent material. Soft chess was grown in unfertilized soil, whereas clover was grown in both unfertilized soil and soil fertilized with NH4NO3 and CaSO4·2H2O at the rates of 224 kg ha−1 N and 78 kg ha−1 S. Two acid-spray irrigation periods of 31 and 26 weeks duration, each delivering 400 mm and separated by a dry period of 23 weeks, simulated typical rainfall of northern California rangeland. Plants were harvested after each of the two spray periods. There were very few deleterious effects of acid rain on plant growth or soil and microbial processes. No significant (p<0.05) effects were shown by soil microbial biomass, CO2 production, nodules per unit weight of clover root, acetylene reduction, denitrification and nitrification potentials, or for soft chess plant weights, and N and P uptake. Mineralizable-N was unaffected also, except in one case. However, pH of soil to 10 mm depths was significantly lower in the pH 3.0 treatment after the first spray period, with a corresponding decrease in exchangeable soil Ca; these effects became significant at greater soil depth only after the second spray period. There were significant effects of acid treatments shown by clover, some of which may be advantageous. Treatments of intermediate acidity generally provided added N and S, which acted as fertilizers, and compensated for possible decreases in plant productivity attributable to acidity per se. There was also evidence of decreased P uptake in unfertilized soil at pH 3. In conclusion, effects of simulated acid rain were minimal, and in some cases were advantageous because of the added N and S having a fertilizer effect on plant nutrition and growth.
Read full abstract