Adenosine 5'-triphosphate (ATP) is a versatile extracellular signal along the tree of life, whereas cAMP plays a major role in vertebrates as an intracellular messenger for hormones, transmitters, tastants, and odorants. Since red algal spore coalescence may be considered analogous to the congregation process of social amoeba, which is stimulated by cAMP, we ascertained whether exogenous applications of ATP, cAMP, adenine, or adenosine modified spore survival and motility, spore settlement and coalescence. Concentration-response studies were performed with carpospores of Mazzaella laminarioides (Gigartinales), incubated with and without added purines. Stirring of algal blades released ADP/ATP to the cell media in a time-dependent manner. 10-300 μM ATP significantly increased spore survival; however, 1,500 μM ATP, cAMP or adenine induced 100% mortality within less than 24 h; the exception was adenosine, which up to 3,000 μM, did not alter spore survival. ATP exposure elicited spore movement with speeds of 2.2-2.5 μm · s(-1) . 14 d after 1,000 μM ATP addition, spore abundance in the central zone of the plaques was increased 2.7-fold as compared with parallel controls. Likewise, 1-10 μM cAMP or 30-100 μM adenine also increased central zone spore abundance, albeit these purines were less efficacious than ATP; adenosine up to 3,000 μM did not influence settlement. Moreover, 1,000 μM ATP markedly accelerated coalescence, the other purines caused a variable effect. We conclude that exogenous cAMP, adenine, but particularly ATP, markedly influence red algal spore physiology; effects are compatible with the expression of one or more membrane purinoceptor(s), discarding adenosine receptor participation.
Read full abstract