Neuroinflammation-related locomotor deficits and neuropathic pain are expected outcomes of spinal cord injury (SCI). The atypical antidepressant mirtazapine has exhibited potential neuroprotective and anti-inflammatory effects. This research aims to investigate the impacts of mirtazapine on post-SCI neuropathic pain and locomotor recovery, with a particular focus on neuroinflammation. The study utilized 30 male Wistar rats divided into five groups: Sham, SCI with vehicle treatment, and SCI administered with mirtazapine (3, 10, and 30mg/kg/day,ip, for one week). Locomotor activity was assessed using the Basso, Beattie, and Bresnahan (BBB) scale. Mechanical, thermal, and cold allodynia were assessed using von-Frey filaments, tail flick latency, and the acetone test, respectively. ELISA was utilized to measure cytokines, while Western blotting was used to determine TRPV1 channel, 5-HT2A receptor, NLRP3, and iNOS expression. Histopathological analyses were also examined, including hematoxylin and eosin (H&E) and Luxol fast blue (LFB) staining. Mirtazapine (10 and 30mg/kg/day) significantly improved locomotor recovery according to BBB score. It attenuated mechanical, thermal, and cold allodynia post-SCI. Moreover, it decreased pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-18, while increasing anti-inflammatory cytokine IL-4 and IL-10. Furthermore, it downregulated iNOS, NLRP3, and TRPV1 expression and upregulated the 5-HT2A receptor. H&E and LFB staining further revealed attenuated tissue damage and decreased demyelination. Our findings suggest that mirtazapine can alleviate neuropathic pain and reinforce locomotor recovery post-SCI by modulating neuroinflammatory responses, NLRP3, iNOS, TRPV1 channel, and 5-HT2A receptor expression.
Read full abstract