The potential health risks of bisphenol A (BS) and diabetes (DI) has sparked public concern due to be ubiquitous worldwide. The purpose of this study was to investigate the detrimental impact of BS (200 mg/kg) on the spinal cord tissue in a rat diabetic model. We also evaluated the antioxidant capacity of hesperidin (HS) (100 mg/kg) on spinal cord in BS-treated diabetic rat. Seventy male Wistar albino rats, weighing 180–230 g and 8 weeks old, were randomly chosen, and assigned into seven groups of 10 rats: Control (KON), BS, DI, BS + DI, HS + BS, HS + DI, HS + BS + DI. At the end of the 14-day experimental period, all samples were examined using stereological, biochemical, and histopathological techniques. Our biochemical findings revealed that the SOD level was significantly lower in the BS, DI, and BS + DI groups compared to the KON group (p < 0.05). Compared to the KON group, there was a significant decrease in the number of motor neurons and an increase in the mean volume of central canals in the BS, DI, and BS + DI groups (p < 0.05). In the HS + BC group than the BS group and in the HS + DI group than the DI group, SOD activity and the number of motor neurons were significantly higher; also, the mean volume of spinal central canal was significantly lower (p < 0.05). The novel findings gathered from the histopathological assessment supported our quantitative results. Our speculation was that the exposure to BS and DI was the main cause of neurological alteration in the spinal cord tissues. The administration of HS had the therapeutic potential to mitigate spinal cord abnormalities resulting from BS and DI. However, HS supplementation did not alleviate spinal cord complications in BS-treated diabetic rats.
Read full abstract