For a time-reversal symmetric system, the quantum spin Hall phase is assumed to be the same as the Z2 topological insulator phase in the existing literature. The spin Chern number Cs is presumed to yield the same topological classification as the Z2 invariant. Here, by investigating the electronic structures of monolayer α-phase group V elements, we uncover the presence of a topological phase in α-Sb, which can be characterized by a spin Chern number Cs = 2, even though it is Z2 trivial. Although α-As and Sb would thus be classified as trivial insulators within the classification schemes, we demonstrate the existence of a phase transition between α-As and Sb, which is induced by band inversions at two generic k points. Without spin–orbit coupling (SOC), α-As is a trivial insulator, while α-Sb is a Dirac semimetal with four Dirac points (DPs) located away from the high-symmetry lines. Inclusion of the SOC gaps out the DPs and induces a nontrivial Berry curvature, endowing α-Sb with a high spin Chern number of Cs = 2. We further show that monolayer α-Sb exhibits either a gapless band structure or a gapless spin spectrum on its edges, as expected from topological considerations.
Read full abstract