The realization of spin-based logical gates crucially depends on magnetically coupled spin qubits. Thus, understanding decoherence when spin qubits are in close proximity will become a roadblock to overcome. Herein, we propose a method free of fitting parameters to evaluate the qubit phase memory time ${T}_{m}$ in samples with high electron spin concentrations. The method is based on a model aimed to estimate magnetic nuclear decoherence [P. C. E. Stamp and I. S. Tupitsyn, Phys. Rev. B 69, 014401 (2004)]. It is applied to a ground-spin $J=8$ magnetic molecule 1 displaying atomic clock transitions, namely ${{[\mathrm{H}{\mathrm{o}}^{\mathrm{III}}{({\mathrm{W}}_{5}{\mathrm{O}}_{18})}_{2}]}^{9}}^{\ensuremath{-}}$, which remarkably increase ${T}_{m}$ at unusually high electron-spin concentrations. Our approach unveils the causes that limit the coherence reached at the clock transitions in challenging systems such as 1, where recent models fail.
Read full abstract