The dynamics of suspensions of particles has been an active area of research since Einstein first calculated the leading-order correction to the viscosity of a suspension of spherical particles (Einstein, Proc. R. Soc., vol. A102, 1906, pp. 161–179). Since then, researchers have strived to develop an accurate description of the behaviours of suspensions that goes beyond just leading order in the particle volume fraction. Here, we consider the low-Reynolds-number behaviour of a suspension of spherical particles. Working from the Green's functions for the flow due to a single particle, we derive a continuum-level description of the dynamics of suspensions. Our analysis corrects an error in the derivation of these equations in the work of Jackson (Chem. Engng Sci., vol. 52, 1997, pp. 2457–2469) and leads to stable equations of motion for the particles and fluid. In addition, our resulting equations naturally give the sedimentation speed for suspended particles and correct a separate error in the calculation by Batchelor (J. Fluid Mech., vol. 52, 1972, pp. 245–268). Using the pair-correlation function for hard spheres, we are able to compute the sedimentation speed out to seventh order in the volume fraction, which agrees with experimental data up to 30 %–35 %, and also get higher-order corrections to the suspension viscosity, which agree with experiments up to $\sim$ 15 %. Then, using the pair distribution for spheres in shear flow, we find alterations to both the first and second normal stresses.
Read full abstract