In this work, a time domain spectral element-based wave finite element method is proposed to analyze periodic structures. Time domain spectral element-based formulation reduces the total degrees of freedom and also renders a diagonal mass matrix resulting in substantial reduction in computation time for the wave finite element method. The formulation is then considered to obtain the stop band characteristics for a periodic bar and a Timoshenko beam considering geometric as well as material periodicity. The impact of geometric parameters on the stop bands of 1-D structures is then investigated in detail. It is shown that the stop bands can be obtained in the frequency range of interest, and its width can be varied by tuning those geometric parameters. Also, the effect of material uncertainty is studied in detail on the stop band characteristics of periodic 1-D structures, and the same formulation is utilized for Monte Carlo simulations. Results show that randomness in density influences more the bandwidth of the stop bands than that of elastic parameters.
Read full abstract