The Tibet Plateau is known as the “third pole” of the world, and its environmental change profoundly impacts East Asia and even the global climate. HDO is the stable isotope of water vapor, which acts as an ideal tracer for studying the water cycle, and which is commonly used for atmospheric circulation and climatic studies. To monitor the water vapor isotopic abundance in the Tibetan Plateau, a portable laser heterodyne radiometer was operated in Golmud in August 2019. The radiometer utilizes a narrow-linewidth 3.66 μm distributed feedback interband cascade laser as the local oscillator, the heterodyne module is been optimized and the radiometer performs with high resolution and stability in obtaining spectral data. Furthermore, the absorption spectra of atmospheric HDO and H2O are obtained, and the retrieval method for water vapor isotopic abundance is discussed. The optimal estimation method is adopted to retrieve the density of HDO and H2O. The average column density of H2O was 1.22 g/cm2, and the HDO/H2O ratio in Golmud was 178 ± 15 × 10−6 during the observation. For a better understanding of the retrieval, the retrieval errors are analyzed and compared. The results indicate that the smoothing error is significantly higher than the measurement error in this work. The backward trajectory analysis of atmospheric transport is used to investigate the relationship between water vapor density and atmospheric motion. The results indicate that the variation of H2O column density and HDO/H2O ratio have a relationship with atmospheric movements.
Read full abstract