Aristolochia plants are emblematic from an ethnopharmacological viewpoint and are know to possess numerous biological properties, including antiseptic. However, the medicinal potential of these species is debatable because of their representative chemical constituents, aristolochic acids (AAs) and aristolactams (ALs), which are associated, for instance, with nephropathy and cancer. These contrasting issues have stimulated the development of approaches intended to detoxification of aristoloquiaceous biomasses, among which is included the bioconversion method using larvae of the specialist phytophagous insect Battus polydamas, previously shown to be viable for chemical diversification and to reduce toxicity. Thus, eleven Aristolochia spp. were bioconverted, and the antimicrobial activities of the plant methanolic extracts and its respective bioconversion products were evaluated. The best results were found for Aristolochia esperanzae, Aristolochia gibertii, and Aristolochia ringens against Bacillus cereus, with MIC ranging from 7.8 to 31.25 μg/mL. These three species were selected for chemical, antioxidant, cytotoxic, hemolytic, and mutagenic analyses. Chemical analysis revealed 65 compounds, 21 of them possible bioconversion products. The extracts showed potential to inhibit the formation and degradation of B. cereus biofilms. Extracts of A. gibertii and its bioconverted biomass showed antioxidant activity comparable to dibutylhydroxytoluene (BHT) standard. Bioconversion decreased the hemolytic activity of A. esperanzae and the cytotoxicities of A. esperanzae and A. gibertii. None of the extracts was found to be mutagenic. The bioactivities of the fecal extracts were maintained, and biocompatibility was improved. Therefore, the results obtained in this study reveal positive expectations about the natural detoxification process of the Aristolochia species.
Read full abstract