The spatial-numerical association of response codes (SNARC) effect denotes the observation that humans respond faster and more accurately with a left-side response to smaller numbers and a right-side response to larger numbers, as compared to the opposite mapping. Existing accounts, such as the mental number line hypothesis or the polarity correspondence principle, differ in whether they assume symmetrical associations between numerical and spatial stimulus and response codes or not. In two experiments, we investigated the reciprocity of the SNARC effect in manual choice-response tasks with two conditions. In the number-location task, participants pressed a left or right key to a number stimulus (dots in Experiment 1, digits in Experiment 2). In the location-number task, participants made one or two consecutive keypresses with one hand to a left- or right-side stimulus. Both tasks were performed with a compatible (one-left, two-right; left-one, right-two) and an incompatible (one-right, two-left; left-two, right-one) mapping. In both experiments, results showed a strong compatibility effect in the number-location task, reflecting the typical SNARC effect. In contrast, in both experiments, there was no mapping effect in the location-number task when outliers were excluded. However, when outliers were not excluded, small reciprocal SNARC effects occurred in Experiment 2. Together, the findings suggest that priming of spatial responses by numerical stimuli is much stronger than priming of numerical responses by spatial stimuli. The results are consistent with some accounts of the SNARC effect (e.g., the mental number line hypothesis), but not with others (e.g., the polarity correspondence principle).
Read full abstract