In time-selective fading channel, the Alamouti orthogonality principle is lost due to the variation of channel from symbol-to-symbol in space–time block-coded orthogonal frequency division multiplexing (STBC-OFDM) system and causes co-channel interference (CCI) effects. To combat the CCI effects, various signal detection schemes have been proposed earlier by assuming that a priori channel state information (CSI) is known to the receiver. However, in practice, the CSI is unknown and therefore accurate estimation of channel is required for efficient signal detection. In this paper, by exploiting circulant properties of the channel frequency response (CFR) autocorrelation matrix [Formula: see text], we propose an efficient low complexity linear-minimum-mean-square-error (LMMSE) estimator. This estimator applies an expectation–maximization (EM) iterative process to reduce the computational complexity significantly. Finally, we compare the proposed LMMSE-EM estimator with conventional least square (LS) and LMMSE estimator in terms of performance and computational complexity. The simulation results show that the proposed LMMSE-EM estimator achieves exactly the same performance as the optimal LMMSE estimator with much lower computational complexity.
Read full abstract