Suitable combinations of observed datasets for estimating crop model parameters can reduce the computational cost while ensuring accuracy. This study aims to explore the quantitative influence of different combinations of the observed phenological stages on estimation of cultivar-specific parameters (CPSs). We used the CROPGRO-Soybean phenological model (CSPM) as a case study in combination with the Generalized Likelihood Uncertainty Estimation (GLUE) method. Different combinations of four observed phenological stages, including initial flowering, initial pod, initial grain, and initial maturity stages for five soybean cultivars from Exp. 1 and Exp. 3 described in Table 2 are respectively used to calibrate the CSPs. The CSPM, driven by the optimized CSPs, is then evaluated against two independent phenological datasets from Exp. 2 and Exp. 4 described in Table 2. Root means square error (RMSE) (mean absolute error (MAE), coefficient of determination (R2), and Nash Sutcliffe model efficiency (NSE)) are 15.50 (14.63, 0.96, 0.42), 4.76 (3.92, 0.97, 0.95), 4.69 (3.72, 0.98, 0.95), 3.91 (3.40, 0.99, 0.96) and 12.54 (11.67, 0.95, 0.60), 5.07 (4.61, 0.98, 0.93), 4.97 (4.28, 0.97, 0.94), 4.58 (4.02, 0.98, 0.95) for using one, two, three, and four observed phenological stages in the CSPs estimation. The evaluation results suggest that RMSE and MAE decrease, and R2 and NSE increase with the increase in the number of observed phenological stages used for parameter calibration. However, there is no significant reduction in the RMSEs (MAEs, NSEs) using two, three, and four observed stages. Relatively reliable optimized CSPs for CSMP are obtained by using at least two observed phenological stages balancing calibration effect and computational cost. These findings provide new insight into parameter estimation of crop models.
Read full abstract