Zooplankton are critical to energy transfer between higher and lower trophic levels in the eastern Bering Sea ecosystem. Previous studies from the southeastern Bering Sea shelf documented substantial differences in zooplankton taxa in the Middle and Inner Shelf Domains between warm and cold years. Our investigation expands this analysis into the northern Bering Sea and the south Outer Domain, looking at zooplankton community structure during a period of climate-mediated, large-scale change. Elevated air temperatures in the early 2000s resulted in regional warming and low sea-ice extent in the southern shelf whereas the late 2000s were characterized by cold winters, extensive spring sea ice, and a well-developed pool of cold water over the entire Middle Domain. The abundance of large zooplankton taxa such as Calanus spp. (C. marshallae and C. glacialis), and Parasagitta elegans, increased from warm to cold periods, while the abundance of gelatinous zooplankton (Cnidaria) and small taxa decreased. Biomass followed the same trends as abundance, except that the biomass of small taxa in the southeastern Bering Sea remained constant due to changes in abundance of small copepod taxa (increases in Acartia spp. and Pseudocalanus spp. and decreases in Oithona spp.). Statistically significant changes in zooplankton community structure and individual species were greatest in the Middle Domain, but were evident in all shelf domains, and in both the northern and southern portions of the eastern shelf. Changes in community structure did not occur abruptly during the transition from warm to cold, but seemed to begin gradually and build as the influence of the sea ice and cold water temperatures persisted. The change occurred one year earlier in the northern than the southern Middle Shelf. These and previous observations demonstrate that lower trophic levels within the eastern Bering Sea respond to climate-mediated changes on a variety of time scales, including those shorter than the commonly accepted quasi-decadal time periods. This lack of resilience or inertia at the lowest trophic levels affects production at higher trophic levels and must be considered in management strategy evaluations of living marine resources.
Read full abstract