The noise from the flow around a circular cylinder in the critical regime is investigated by combining a compressible wall-resolved large eddy simulation and a Ffowcs Williams and Hawkings analogy on solid and porous surfaces. This simulation is validated by comparing several flow parameters with previous experimental and numerical data in the same flow regime. Significantly reduced drag and increased vortex shedding Strouhal number (0.33) are observed. Two slightly asymmetric laminar separation bubbles (LSBs) on the cylinder surface at about 100° are shown to trigger turbulence through Kelvin-Helmholtz (KH) shear-layer instability. The latter contributes to a narrowband hump in the wall-pressure fluctuations with a tone at a Strouhal number of 27, which can be as intense as the dominant vortex shedding tone. The ratio of the corresponding Strouhal numbers is consistent with the proposed variation with the Reynolds number by Prasad and Williamson [(1997). J. Fluid Mech. 333, 375-402]. The dominant far-field noise source is still the vortex shedding dipolar tone radiating mostly at 90°. Yet, two additional broadband noise sources are evidenced in the wake, one at low frequencies caused by the wake oscillation and another one at high frequencies caused by the KH instability mostly directly toward the LSB locations.
Read full abstract