Understanding patterns of cortico-cortical connections in both frequently and infrequently studied species advances our knowledge of cortical organization and evolution. The agouti (Dasyprocta aguti, a medium-size South American rodent) offers a unique opportunity, because of its large lissencephalic brain and its natural behaviors, such as gnawing and hiding seeds, that require bimanual interaction while sitting on its hindlimbs and aligning its head to receive images of the horizon on the retinal visual streak. There have been no previous studies of the intrinsic and extrinsic ipsilateral projections of the agouti's primary somatosensory cortical area (S1). In the present study, we utilized biotinylated dextran (BDA) anatomical tract-tracer injections combined with microelectrode electrophysiological mapping, correlated with analysis of cytochrome oxidase (CO) histochemical staining, to investigate the ipsilateral corticocortical connectivity of the agouti's S1. By injecting BDA into electrophysiologically identified regions within the S1, we revealed ipsilateral intrinsic connections, as well as connections with cortical areas rostral and caudal to S1, and homotopic labeling in the second somatosensory cortical area (S2). In addition, we identified a focal cluster of labeled axons and axonal terminals adjacent to the rhinal fissure, tentatively named the parietal rhinal area (PR). The analysis of CO reactivity allowed delineation of the boundaries and subdivisions of S1, as well as the locations and limits of primary auditory and visual areas. These findings provide support for the notion of a similar pattern of somatosensory cortical organization and connectivity across mammalian species.
Read full abstract