It has been reported that Xenopus egg extracts contain molecules that are capable of reprogramming mammalian somatic cells. The reprogrammed somatic cells, which are called extract treated cells (ETC), possess the potential for clinical therapy as embryonic stem (ES) cells do. Therefore, in addition to establishment of an efficient method to reprogram mouse NIH/3T3 cells by Xenopus egg extracts, the aim of this study was to select the ETC cells by the expression of Oct4. In Experiment 1, two methods, electroporation or permeabilization, were conducted to treat mouse NIH/3T3 cells with Xenopus egg extracts. 2 × 105 cells in 200 μL reprogramming mixture containing Xenopus egg extracts were stimulated by a direct current (DC) pulse (80 V mm–1 for 3 msec) three times followed by a pause of incubation at 37°C for 5 min and a single DC pulse (170 V mm–1, for 0.4 msec) subsequently. The electroporated cells were then incubated at 22°C for 1 h. In the other treatment group, NIH/3T3 cells (5 × 105) were permeabilized by streptolysin O (SLO, 500 ng mL–1 in PBS) for 50 min at 37°C before mixed with Xenopus egg extracts at 22°C for 2 h. Cells were cultured in DMEM supplemented with 10% FBS for the first 4 days and then changed to ES medium (DMEM supplemented with 15% FBS, 0.1 mm β-mercaptoethanol, 1000 unit mL–1 mLIF, 0.5% nonessential amino acids, 2 mm L-glutamine) for the last 6 days after Xenopus egg extract treatment. Cell colonies were found in both treatment groups at the end of culture. Examination by immunocytochemical staining, results showed that the extract-treated cell colonies expressed pluripotent marker proteins, such as alkaline phosphatase, Oct4, Nanog and Sox2. In Experiment 2, an enhanced green fluorescent protein (EGFP) expression vector was constructed and EGFP was driven by Oct4 enhancer and promoter (Oct4-EGFP). Mouse NIH/3T3 cells were then transfected with Oct4-EGFP plasmids and selected for stable clone by G418 screening. After 6 passages, the NIH/3T3-Oct4-EGFP cells were treated with egg extracts to induce reprogramming as Experiment 1, and monitored pluripotency based on the expression of EGFP. Results showed that some of the cells or cell colonies expressed green fluorescence driven by Oct4 regulatory element at the 8th day of culture after extract treatment. Our results demonstrated that both methods of electroporation and reversible permeabilization could introduce reprogramming molecules in Xenopus egg extract to the mammalian somatic cells and generate ETCs cells in vitro. Also, with the establishment of NIH/3T3-Oct4-EGFP cell line, the potentially reprogrammed colonies could be easily selected by EGFP expression. The changes of epigenetic modifications in the ETC cells would be investigated in the short future.
Read full abstract