Due to its distinctive two-dimensional planar structure, room temperature quantum Hall effect, and high strength, graphene has garnered significant interest in the fields of energy storage and conversion. In order to achieve high efficiency in the production of graphene, electrochemical peeling has been extensively investigated. Nevertheless, the intermolecular forces between graphite layers are disrupted during ion intercalation in solution, leading to inconsistent bonding forces and low yields. In order to address the issues above, this study introduces a novel bottom-up electrochemical peeling method, wherein graphite expansion occurs above the electrolyte. By preventing contact between the peeled graphene and the electrolyte, the oxidation of graphene is significantly minimized, resulting in a substantial yield of 88 %. At the current density of 1.0 A g−1, the Go-QAS displayed 225.5 F g−1, and kept about 220.2 F g−1 after 500 cycles. The well-designed bottom-up peeling process leads to graphene nanosheets with reduced structural degradation, high purity, and excellent conductivity. This technique is expected to introduce innovative concepts for the field.
Read full abstract