Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are the core components that mediate vesicle fusion, and they play an important role in secondary metabolism of filamentous fungi. However, in Monascus spp., one of the traditional medicinal and edible filamentous fungi, the members and function of SNAREs remain unknown. Here, twenty SNAREs in M. ruber M7 were systematically identified based on the gene structure, amino acid structure and phylogenetic analysis and were classified into four subfamilies. We also compared the expression profiles of twenty MrSNAREs in M. ruber M7 and its deletion mutants, ΔmrpigA and ΔpksCT, which could not produce Monascus pigment and citrinin, respectively. The results indicated that these MrSNAREs showed distinct expression patterns in the three strains. Compared to M. ruber M7, the expression levels of Mrtlg2, Mrbet1, Mrgos1 and Mrsec22 remained higher in ΔmrpigA but lower in ΔpksCT, which could be reason to consider them as potential candidate genes involved in secondary metabolism for further functional characterization. Further, the significant upregulation of Mrpep12 and Mrvtil in ΔpksCT is worthy of attention for further research. Our results provide systematic identification and expression profiling of the SNARE family in Monascus and imply that the functions of MrSNAREs are specific to different secondary metabolic processes.
Read full abstract