AbstractTo find the best method of predicting when daily relativistic electron flux (>2 MeV) will rise at geosynchronous orbit, we compare model predictive success rates (true positive rate or TPR) for multiple regression, ARMAX, logistic regression, a feed‐forward multilayer perceptron (MLP), and a recurrent neural network (RNN) model. We use only those days on which flux could rise, removing days when flux is already high from the data set. We explore three input variable sets: (1) ground‐based data (Kp, Dst, and sunspot number), (2) a full set of easily available solar wind and interplanetary magnetic field parameters (|B|, Bz, V, N, P, Ey, Kp, Dst, and sunspot number, and (3) this full set with the addition of previous day's flux. Despite high validation correlations in the multiple regression and ARMAX predictions, these regression models had low predictive ability (TPR < 45%) and are not recommended for use. The three classifier model types (logistic regression, MLP, and RNN) performed better (TPR: 50.8–74.6%). These rates were increased further if the cost of missing an event was set at 4 times that of predicting an event that did not happen (TPR: 73.1–89.6%). The area under the receiver operating characteristic curves did not, for the most part, differ between the classifier models (logistic, MLP, and RNN), indicating that any of the three could be used to discriminate between events and nonevents, but validation suggests a full RNN model performs best. The addition of previous day's flux as a predictor provided only a slight advantage.
Read full abstract