A variable genomic region containing two Harosoy-derived loci related to Rps7 and one Nemashirazu-derived locus confers broad-spectrum Phytophthora sojae resistance in Tosan-231 and is useful for developing resistant cultivars. We investigated resistance to pathotypically variable Phytophthora sojae isolates in the soybean variety Tosan-231, which has broad-spectrum resistance. Mapping analysis using descendent lines from a cross between Shuurei and Tosan-231 demonstrated that a genomic region between SSR markers BARCSOYSSR_03_0209 and BARCSOYSSR_03_0385 (termed "Region T"), confers broad-spectrum resistance in Tosan-231 and contains three closely linked resistance loci. Inoculation tests with 20 P. sojae isolates of different pathotypes and simple sequence repeat (SSR) analysis of progenitors of Tosan-231 facilitated identification and characterization of Rps genes at the three resistance loci. Two resistance genes, RpsT1 and RpsT2, were found to be derived from Harosoy carrying Rps7. This result suggested two mutually exclusive possibilities: (1) either RpsT1 or RpsT2 is Rps7, and the other is a locally functional novel gene; (2) Rps7 is not a single gene but in fact comprises RpsT1 and RpsT2. The resistance locus containing RpsT3 is derived from Nemashirazu, in which Rps genes have remained poorly defined. Moreover, we identified two genomic regions with relatively high recombination frequencies on the basis of mapping information and proposed a strategy to readily assemble useful resistance genes in or around Region T.
Read full abstract