Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by oxidative stress and neuroinflammation. Sofalcone (SFC), a chalcone derivative known for its antioxidative and anti-inflammatory properties, is widely used clinically as a gastric mucosa protective agent. However, its therapeutic potential in PD remains to be fully explored. In this study, we investigated the neuroprotective effects of SFC in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We found that SFC ameliorated MPTP-induced motor impairments in mice, as assessed by the rotarod and wire tests. Moreover, SFC administration prevented the loss of dopaminergic neurons and striatal degeneration induced by MPTP. Subsequent investigations revealed that SFC reversed MPTP-induced downregulation of NRF2, reduced elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased total antioxidant capacity (TAOC). Furthermore, SFC suppressed MPTP-induced activation of microglia and astrocytes, downregulated the pro-inflammatory cytokine TNF-α, and upregulated the anti-inflammatory cytokine IL-4. Additionally, SFC ameliorated the MPTP-induced downregulation of phosphorylation of Akt at Ser473. This study provides evidence for the neuroprotective effects of SFC, highlighting its antioxidative and anti-inflammatory properties and its role in Akt activation in the PD model. These findings underscore SFC's potential as a promising therapeutic candidate for PD, warranting further clinical investigation.
Read full abstract