The flotation recovery by particle size of single mineral chalcopyrite and galena was studied in a Denver flotation cell, using sodium dicresylthiophosphate (DTP) and sodium isopropyl xanthate (SIPX) as collectors and polypropylene glycol (PPG) as a frother. The study was extended to very coarse particle size (up to 1·6 mm). Froth stability was also measured in parallel to the batch flotation tests, in a specifically designed froth stability column, following the Bikerman approach. It is shown that particles up to 850 μm can be floated successfully, provided they are liberated and hydrophobic. However, the recovery of both chalcopyrite and galena was strongly influenced by the overall particle size distribution, decreasing sharply as the fraction of fines (−106 μm) in the feed also decreased. Rheology measurements showed negligible differences in pulp viscosity, and therefore in the collection zone hydrodynamics, between the different conditions tested. Froth stability, on the contrary, decreased as the feed particle size distribution became coarser. Correlation was found between the amount of fines in the pulp, froth stability and flotation recovery. The recovery of mineral particles is critically dependent on froth stability, which in turn is highly influenced by the overall particle size distribution of the feed material. For these reasons, the study also suggests that it is not possible in batch flotation to determine the rate and recovery of the coarse particle size fractions floating them independently from the fine size fractions.Dans une cellule de flottation de Denver, on a étudié la récupération par flottation en fonction de la taille de particule d’un minéral unique de chalcopyrite ou de galène, en utilisant du dicrésyle thiophosphate de sodium (DTP) et de l’isopropyle xanthate de sodium (SIPX) comme agents collecteurs et du polypropylène glycol (PPG) comme agent moussant. On a étendu l’étude à la taille de particule très grossière (jusqu’à 1·6 mm). On a également mesuré la stabilité de la mousse en parallèle aux essais de flottation discontinue, dans une colonne de stabilité de la mousse spécialement conçue, d’après l’approche de Bikerman. On montre que l’on peut faire flotter avec succès des particules ayant jusqu’à 850 μm, à la condition qu’elles soient libres et hydrophobes. Cependant, la récupération, tant de la chalcopyrite que de la galène, était fortement influencée par la distribution globale de la taille de particule, diminuant sévèrement à mesure que la fraction de particules fines (−106 μm) dans l’alimentation diminuait. Les mesures de rhéologie montraient des différences négligeables dans la viscosité de la pulpe et ainsi dans l’hydrodynamique de la zone de collection, parmi les différentes conditions évaluées. Au contraire, la stabilité de la mousse diminuait à mesure que la distribution de la taille de particule de l’alimentation devenait plus grossière. On a trouvé une corrélation entre la quantité de particules fines dans la pulpe, la stabilité de la mousse et la récupération par flottation. La récupération des particules minérales dépend, de façon critique, de la stabilité de la mousse qui, à son tour est hautement influencée par la distribution globale de la taille de particule du matériel d’alimentation. Pour ces raisons, l’étude suggère également qu’il n’est pas possible, en flottation discontinue, de déterminer la vitesse et la récupération des fractions de taille de particules grossières, en les faisant flotter indépendamment des fractions de taille fine.
Read full abstract