In the research work, energy transport between a dense fluidized bed and submerged horizontal tube bundle is analyzed in the commercial external heat exchanger (EHE). In order to investigate the heat transfer behavior, the authors carried out eight performance tests in a fluidized bed heat exchange chamber with a cross-section of 2.7 × 2.3 m in depth and width and a height of 1.3 m. The authors have been developing a mechanistic model for the prediction of the average heat transfer coefficient, which includes the effect of the geometric structure of the tube bundle and the location of the heat transfer surface on the heat transfer rate. The computational results depict that the average heat transfer coefficient is essentially affected by superficial gas velocity and suspension density rather than bed particle size. The empirical correlations have been proposed for predicting heat transfer data since the existing literature data is not sufficient for industrial fluidized bed heat exchangers. On the basis of the evaluated operating conditions of an external heat exchanger, the optimal conditions where heat transfer occurs could be deduced. The developed mechanistic heat transfer model is validated by experimental data under the examined conditions.
Read full abstract