The magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite are studied experimentally under hydrostatic pressure. The results show that, in the whole pressure range under investigation (0–1 GPa), the sample is a spin glass with a smeared phase transition to the paramagnetic state. It is found that the spin glass state arises from the frustration of the exchange coupling of the ferromagnetic clusters embedded in the antiferromagnetic matrix. The fraction of the sample volume occupied by the ferromagnetic phase is found to be V fer ∼ 13%. Under hydrostatic pressure, the freezing temperature T f of the magnetic moments of the ferromagnetic clusters increases at a rate of 4.30 K/GPa and the magnetic ordering temperature T MO increases at a rate of 12.90 K/GPa. In addition, the ferromagnetic part of the sample increases by ΔV fer ∼ 5%. The enhancement of the ferromagnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure is explained by the redistribution of oxygen vacancies and a decrease in the unit-cell parameters.
Read full abstract