In the steel industry, small billets have become the main type of billet for steel production due to the efficiency of the continuous casting process. However, the segregation that occurs during solidification remains a significant issue affecting billet quality. This study conducted a macroscopic segregation analysis on 172 mm × 172 mm small square billets and investigated the influence of various process parameters on the distribution of carbon within the cast billets. The results showed that an increase in superheat led to a 0.036% rise in the carbon difference and an increase in the central segregation value from 0.357% to 0.364%. Increasing the cooling intensity resulted in a 0.037% rise in the carbon difference and a decrease in the negative segregation value from 0.266% to 0.250%. Higher casting speeds caused the carbon difference to reach a minimum of 0.107% at a speed of 1.6 m·min−1, while the central segregation value reached its lowest point of 0.353% at a casting speed of 2.6 m·min−1.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
1351 Articles
Published in last 50 years
Related Topics
Articles published on Small Square
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
1426 Search results
Sort by Recency