Terrestrial laser scanning (TLS) can provide accurate and detailed three-dimensional (3D) structure information of the forest understory. Segmenting individual trees from disordered, discrete, and high-density TLS point clouds is the premise for obtaining accurate individual tree structure parameters of forest understory, pest control and fine modeling. In this study, we propose a bottom-up method to segment individual trees from TLS forest data based on density-based spatial clustering of applications with noise (DBSCAN). In addition, we also improve the DBSCAN based on the distance distribution matrix (DDM) to automatically and adaptively determine the optimal cluster number and the corresponding input parameters. Firstly, the proposed method is based on the improved DBSCAN to detect the trunks and obtain the initial clustering results. Then, the Hough circle fitting method is used to modify the trunk detection results. Finally, individual tree segmentation is realized based on regional growth layer-by-layer clustering. In this paper, we use TLS multi-station scanning data from Chinese artificial forest and German mixed forest, and then evaluate the efficiency of the method from three aspects: overall segmentation, trunk detection and small tree segmentation. Furthermore, the proposed method is compared with three existing individual tree segmentation methods. The results show that the total recall, precision, and F1-score of the proposed method are 90.84%, 95.38% and 0.93, respectively. Compared with traditional DBSCAN, recall, accuracy and F1-score are increased by 6.96%, 4.14% and 0.06, respectively. The individual tree segmentation result of the proposed method is comparable to those of the existing methods, and the optimal parameters can be automatically extracted and the small trees under tall trees can be accurately segmented.
Read full abstract