Abstract. This study aimed to evaluate the applicability of the Soil and Water Assessment Tool (SWAT) to predict streamflow, nitrate loadings and crop yields for a small agricultural catchment in northeastern Germany. To this end, a 167 ha catchment was delineated consisting of 10 hydrological response units. Daily data for streamflow and nitrate loadings from 2004 to 2015 were used to calibrate and validate the model, while annual values for crop yields (winter wheat, winter barley, rapeseed, maize silage) were available. In addition, the detailed field maps provided by the local farmer were used to implement exact crop rotations and nitrogen fertilization into the model. Nash-Sutcliffe-Efficiencies for streamflow were 0.54 during the calibration and 0.57 for the validation period. The modeling performance for nitrate loadings were lower with 0.31 for the calibration and 0.42 for the validation period. The average crop yields were reproduced well, while SWAT failed to reproduce the inter-annual crop yield variations. A scenario analysis revealed that a slight decrease of nitrogen fertilization leads to significant reductions in nitrate loadings, while crop yields remained on a high level. The outcome of the study may help practitioners to operate according to an economic and environmental optimal N management. Nevertheless, experimental studies with varying fertilization intensities at catchment scale are needed to underpin the modeling results.
Read full abstract