This paper is concerned with stochastic fractional nonlinear Schrödinger equation, which plays a very important role in fractional nonrelativistic quantum mechanics. Due to disturbing and interacting of the fractional Laplacian operator on a bounded interval with white noise, the stochastic fractional nonlinear Schrödinger equation is too complicated to be understood. This paper would explore and analyze this stochastic fractional system. Using a suitable weighted space with some fractional operator skills, it overcame the difficulties coming from the fractional Laplacian operator on a bounded interval. Applying the tightness instead of the common compactness, and combining Prokhorov theorem with Skorokhod embedding theorem, it solved the convergence problem in the case of white noise. It finally established the existence of martingale solutions for the stochastic fractional nonlinear Schrödinger equation on a bounded interval.
Read full abstract