Published in last 50 years
Articles published on SKBR3 Breast Cancer Cells
- Research Article
2
- 10.3390/ncrna9060066
- Oct 26, 2023
- Non-Coding RNA
- María De Los Ángeles Gastélum-López + 10 more
Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
- Research Article
1
- 10.1371/journal.pone.0291549
- Oct 6, 2023
- PLOS ONE
- Stephanie Cabarcas-Petroski + 2 more
RNA polymerase III transcription is pivotal in regulating cellular growth and frequently deregulated in various cancers. MAF1 negatively regulates RNA polymerase III transcription. Currently, it is unclear if MAF1 is universally deregulated in human cancers. Recently, MAF1 expression has been demonstrated to be altered in colorectal and liver carcinomas and Luminal B breast cancers. In this study, we analyzed clinical breast cancer datasets to determine if MAF1 alterations correlate with clinical outcomes in HER2-positive breast cancer. Using various bioinformatics tools, we screened breast cancer datasets for alterations in MAF1 expression. We report that MAF1 is amplified in 39% of all breast cancer sub-types, and the observed amplification co-occurs with MYC. MAF1 amplification correlated with increased methylation of the MAF1 promoter and MAF1 protein expression is significantly decreased in luminal, HER2-positive, and TNBC breast cancer subtypes. MAF1 protein expression is also significantly reduced in stage 2 and 3 breast cancer compared to normal and significantly decreased in all breast cancer patients, regardless of race and age. In SKBR3 and BT474 breast cancer cell lines treated with anti-HER2 therapies, MAF1 mRNA expression is significantly increased. In HER2-positive breast cancer patients, MAF1 expression significantly increases and correlates with five years of relapse-free survival in response to trastuzumab treatment, suggesting MAF1 is a predictive biomarker in breast cancer. These data suggest a role for MAF1 alterations in HER2-positive breast cancer. More extensive studies are warranted to determine if MAF1 serves as a predictive and prognostic biomarker in breast cancer.
- Research Article
2
- 10.4103/japtr.japtr_278_23
- Oct 1, 2023
- Journal of Advanced Pharmaceutical Technology & Research
- Naser Hameed Saleh + 2 more
Hesperetin (HSP), a flavonoid, has been validated to modify gene expression and function as an epigenetic agent to stop the development of breast carcinoma cells. HSP was investigated in this research to evaluate the expression of the MLH1 and MSH2 genes in cancerous breast cell lines (SKBR3) and healthy cell lines (MCF-11A) after exposure to different dosages (200, 400, and 600 µM/mL) of HSP. After 48 h of exposure, SKBR3's half-maximal inhibitory concentration was 289.6 µM/mL and MCF-10A's was 855.4 µM/mL. The research found that increasing HSP concentrations were closely correlated with an increase in MLH1 gene levels in the SKBR3 cell line, as shown by median and percentile values. HSP therapy caused the MLH1 gene expression to substantially vary in different groups, and in the SKBR3 cell line, MSH2 gene expressions were elevated in a dose-escalating manner. Moreover, HSP also raised the number of apoptotic cells, with the fraction of apoptotic cells escalating substantially at doses of 400 and 600 µM/mL. The outcomes suggested that HSP has the potential to be utilized as a therapeutic intervention for breast cancer, as it can induce apoptosis and reduce cell viability.
- Research Article
4
- 10.1002/smll.202303934
- Aug 26, 2023
- Small (Weinheim an der Bergstrasse, Germany)
- Eva Villar‐Alvarez + 10 more
Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodaltheranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.
- Research Article
2
- 10.1021/acs.analchem.3c01689
- Jul 17, 2023
- Analytical Chemistry
- Jiahui Lv + 11 more
Cell membrane-associated RNA (mem-RNA) has been demonstrated to be cell-specific and disease-related and are considered as potential biomarkers for disease diagnostics, drug delivery, and cell screening. However, there is still a lack of methods specifically designed to extract mem-RNA from cells, limiting the discovery and applications of mem-RNA. In this study, we propose the first all-in-one solution for high-purity mem-RNA isolation based on two types of magnetic nanoparticles, named MREMB (Membrane-associated RNA Extraction based on Magnetic Beads), which achieved ten times enrichment of cell membrane components and over 90% recovery rate of RNA extraction. To demonstrate MREMB's potential in clinical research, we extracted and sequenced mem-RNA of typical breast cancer MCF-7, MDA-MB-231, and SKBR-3 cell lines and non-neoplastic breast epithelial cell MCF-10A. Compared to total RNA, sequencing results revealed that membrane/secreted protein-encoding mRNAs and long noncoding RNAs (lncRNAs) were enriched in the mem-RNA, some of which were significantly overexpressed in the three cancer cell lines, including extracellular matrix-related genes COL5A1 and lncRNA TALAM1. The results indicated that MREMB could enrich membrane/secreted protein-coding RNA and amplify the expression differences of related RNAs between cancer and non-neoplastic cells, promising for cancer biomarker discovery.
- Research Article
2
- 10.1007/s10517-023-05871-6
- Jul 1, 2023
- Bulletin of experimental biology and medicine
- T Liu + 10 more
The study examined the mechanisms of action of signal protein claudin 6 (CLDN6) on migration and invasion of breast cancer cell lines MCF-7 and SKBR-3. To this end, the signal proteins SMAD were blocked with their inhibitor SB431542, the genes CLDN6 and SNAIL were knocked down with short hairpin RNAs, and MMP2 and MMP9 were inhibited with TIMP-1. Expressions of MMP2 and MMP9 mRNAs were evaluated by reverse transcription PCR, Expressions of MMP-2, MMP-9, E-cadherin, N-cadherin, and vimentin were examined by Western blotting. Migration and invasion were analyzed by scratch test and Matrigel invasion assay. SB431542 inhibited expression of MMP2 and MMP9 in both cell lines. Single use of SB431542 inhibited expression of MMP-2/MMP-9 and corresponding mRNAs, but subsequent silencing of CLDN6 gene reversed this effect. TIMP-1 reversed down-regulation of E-cadherin, upregulation of N-cadherin and vimentin, facilitation of migration and invasion evoked by CLDN6 knocking down. Silencing of SNAIL gene inhibited migration and invasion, upregulated the expression of E-cadherin, and down-regulated expression of MMP2, MMP 9, N-cadherin, and vimentin. Thus, CLDN6 suppresses the epithelial-mesenchymal transition, migration, and invasion via blocking SMAD/Snail/MMP-2/9 signaling pathway in MCF-7 and SKBR-3 cancer cell lines.
- Research Article
8
- 10.1007/s00210-023-02579-2
- Jun 27, 2023
- Naunyn-Schmiedeberg's Archives of Pharmacology
- Zahra Asghari Lalami + 3 more
Multiple potential drug delivery strategies have emerged as a result of recent advances in nanotechnology and nanomedicine. The aim of this research was to prepare an optimized system of PEGylated gingerol-loaded niosomes (Nio-Gin@PEG) as an excellent candidate for the treatment of human breast cancer cells. The preparation procedure was modified by adjusting the drug concentration, lipid content, and Span60/Tween60 ratio, resulting in high encapsulation efficacy (EE%), rapid release rate, and reduced size. The Nio-Gin@PEG exhibited significantly improved storage stability compared to the gingerol-loaded niosomes formulation (Nio-Gin), with minimal changes in EE%, release profile, and size during storage. Furthermore, Nio-Gin@PEG demonstrated pH-dependent release behavior, with delayed drug diffusion at physiological pH and significant drug diffusion under acidic conditions (pH = 5.4), making it a promising option for cancer treatment. Cytotoxicity tests indicated that Nio-Gin@PEG possessed excellent biocompatibility with human fibroblast cells while exerting a remarkable inhibitory effect on MCF-7 and SKBR3 breast cancer cells, attributed to the presence of gingerol and the PEGylated structure in the preparation. Nio-Gin@PEG also exhibited the ability to modulate the expression of target genes. We observed statistically significant down-regulation of the expression of BCL2, MMP2, MMP9, HER2, CCND1, CCNE1, BCL2, CDK4, and VEGF genes, along with up-regulation of the expression of BAX, CASP9, CASP3, and P21 genes. Flow cytometry results revealed that Nio-Gin@PEG could induce a higher rate of apoptosis in both cancerous cells compared to gingerol and Nio-Gin, owing to the optimal encapsulation and efficient drug release from the formulation, as confirmed by cell cycle tests. ROS generation demonstrated the superior antioxidant effect of Nio-Gin@PEG compared to other prepared formulations. The results of this study emphasize the potential of formulating highly biocompatible niosomes in the future of nanomedicine, enabling more precise and effective treatment of cancers.
- Research Article
- 10.9755/ejfa.2023.3132
- Jun 8, 2023
- Emirates Journal of Food and Agriculture
- Mohammad Fahad Ullah + 5 more
Cancer is associated with a high rate of pre-mature mortality worldwide and serves as a significant impediment to extended life expectancy, leading to undesirable long-term effects on the quality of life of the patients. Bioactive chemical products derived from natural sources have an important place in the well-being of the human population since ancient times. Compounds derived from natural sources have dominated the drug discovery programs in the last five decades and comprise a substantial proportion of current-day pharmaceutical agents. Rhazya stricta, an evergreen shrub, it belongs to family Apocynaceae of order Gentianales, and the Rhazya stricta is known to have certain medicinal properties, as the Middle East and South Asian traditional medicine employed this plant as a cure for different diseases. Herein, the hydro-methanolic extract of Rhazya stricta Decne has been studied for its effect on spectrum of cancer cells, including LNCaP, C4-2B, PC-3 prostate cancer cells, MDA-MB-231, MCF-7, SKBR3 breast cancer cells, A-549 lung cancer cells and BxPC-3, MiaPaCa-2 pancreatic cancer. Hydro-methanolic extract of Rhazya stricta Decne in a dose-dependent manner, showed progressive inhibition of cell growth by induction of cell death in the treated human cancer cells. The IC value range for different breast cancer cell lines was 142-178 µg/ml; for prostate cancer cell lines, it was 90-148 µg/ml; for pancreatic cancer cell lines 116-166 µg/ml and for the lung cancer cells, it was reported to be 180 µg/ml. The anti-metastatic potential of extract was indicated by the notable reduction in invasiveness and cell migration. Moreover, the structurally diverse phytochemical rich extract, also downregulates the signaling of NF-kB and the NF-kB downstream target cytokine VEGF, providing an insight into the anticancer action mechanism.Keywords: Cell biology; Cancer chemoprevention; Anticancer drugs; Cell signaling; Natural compounds
- Research Article
3
- 10.1021/acsomega.2c07866
- May 15, 2023
- ACS omega
- Shiwen Zhang + 14 more
MicroRNAs (miRNAs) play an essential role in cancer therapy, but the disadvantages of its poor inherent stability, rapid clearance, and low delivery efficiency affect the therapeutic efficiency. Loading miRNAs by nanoformulations can improve their bioavailability and enhance therapeutic efficiency, which is an effective miRNA delivery strategy. In this study, we synthesized layered double hydroxides (LDH), which are widely used as carriers of drugs or genes due to the characteristics of good biocompatibility, high loading capacity, and pH sensitivity. We loaded the suppressor oncogene miR-30a on LDH nanomaterials (LDH@miR-30a) and determined the mass ratio of miRNA binding to LDH by agarose gel electrophoresis. LDH@miR-30a was able to escape the lysosomal pathway and was successfully phagocytosed by breast cancer SKBR3 cells and remained detectable in the cells after 24 h of co-incubation. In vitro experiments showed that LDH@miR-30a-treated SKBR3 cells showed decreased proliferation and cell cycle arrest in the G0/G1 phase and LDH@miR-30a was able to regulate the epithelial-mesenchymal transition (EMT) process and inhibit cell migration and invasion by targeting SNAI1. Meanwhile, in vivo experiments showed that nude mice treated with LDH@miR-30a showed a significant reduction in their solid tumors and no significant impairment of vital organs was observed. In conclusion, LDH@miR-30a is an effective drug delivery system for the treatment of breast cancer.
- Research Article
16
- 10.1002/smll.202301043
- May 8, 2023
- Small
- Juan Chen + 13 more
Heterogeneity and drug resistance of tumor cells are the leading causes of incurability and poor survival for patients with recurrent breast cancer. In order to accurately deliver the biological anticancer drugs to different subtypes of malignant tumor cells for omnidirectional targeted treatment of recurrent breast cancer, a distinct design is demonstrated by embedding liposome-based nanocomplexes containing pro-apoptotic peptide and survivin siRNA drugs (LPR) into Herceptin/hyaluronic acid cross-linked nanohydrogels (Herceptin-HA) to fabricate a HER2/CD44-targeted hydrogel nanobot (named as ALPR). ALPR delivered cargoes to the cells overexpressing CD44 and HER2, followed by Herceptin-HA biodegradation, subsequently, the exposed lipid component containing DOPE fused with the endosomal membrane and released peptide and siRNA into the cytoplasm. These experiments indicated that ALPR can specifically deliver Herceptin, peptide, and siRNA drugs to HER2-positive SKBR-3, triple-negative MDA-MB-231, and HER2-negative drug-resistant MCF-7 human breast cancer cells. ALPR completely inhibited the growth of heterogeneous breast tumors via multichannel synergistic effects: disrupting mitochondria, downregulating the survivin gene, and blocking HER2 receptors on the surface of HER2-positive cells. The present design overcomes the chemical drug resistance and opens a feasible route for the combinative treatment of recurrent breast cancer, even other solid tumors, utilizing different kinds of biological drugs.
- Research Article
7
- 10.1007/s13346-023-01330-x
- Mar 29, 2023
- Drug Delivery and Translational Research
- Hadi Mohammadzade + 5 more
In a significant percentage of breast cancers, increased expression of the HER2 receptor is seen and is associated with the spread and worsening of the disease. This research aims to investigate the effect of miR-559 (which targets HER2 mRNA) on SKBR3 breast cancer cells and the possibility of their effective delivery with polymeric nanoparticles and tumor-targeting peptides. L-DOPA monomers were polymerized on the surface of silica nanoparticles in the presence of miR-559 (as a molecular template for molecular imprinting) then an anti-HER2 peptide coupled to the surface of these polymeric nanocomposites (miR-NC-NL2), and the effects of this construct against a HER2-positive breast cancer cells (SKBR3 cells) investigated in vitro conditions. The results showed that miR-NC-NL2 is selective for HER2-positive cells and delivers the miR-559 to them in a targeted manner. miR-NC-NL2 decreased the proliferation of SKBR3 cells and reduced the expression and production of HER2 protein in these cells. Effective and targeted delivery of miR-559 to HER2-positive cancer cells by the miR-NC-NL2 promises the therapeutic potential of this nascent structure based on its inhibitory effect on cancer growth and progression. Of course, animal experiments require a better understanding of this structure's anti-tumor effects.
- Research Article
2
- 10.21873/cdp.10199
- Mar 3, 2023
- Cancer Diagnosis & Prognosis
- Javier Hernandez-Juarez + 6 more
One of the hallmarks of cancer is deregulation of multiple signaling pathways, which can lead to uncontrolled proliferation and migration of cells. Over-expression and mutations in human epidermal growth factor receptor 2 (HER2) can lead to overactivation of these pathways, potentially developing cancer in different tissues, including breast tissue. IGF-1R and ITGB-1 are two receptors that have been linked to cancer development. Therefore, the aim of this study was to investigate the effects of silencing of the corresponding genes using specific siRNAs. Transient silencing of HER2, ITGB-1, and IGF-1R was conducted using siRNAs and expression was quantified by reverse transcription-quantitative polymerase chain reaction. Viability in human breast cancer cells SKBR3, MCF-7, and HCC1954 and cytotoxicity in HeLa cells were tested using WST-1 assay. The use of anti-HER2 siRNAs in a breast cancer cell line over-expressing HER2 (SKBR3) led to a decrease in cell viability. However, silencing of ITGB-1 and IGF-1R in the same cell line had no significant effects. Silencing of any of the genes encoding any of the three receptors in MCF-7, HCC1954, and HeLa had no significant effects. Our results provide evidence towards using siRNAs against HER2-positive breast cancer. Silencing of ITGB-1 and IGF-R1 did not significantly inhibit the growth of SKBR3 cells. Therefore, there is need for testing the effect of silencing ITGB-1 and IGF-R1 in other cancer cell lines over-expressing these biomarkers and explore their potential use in cancer therapy.
- Research Article
2
- 10.1111/gtc.13016
- Mar 2, 2023
- Genes to Cells
- Akitaka Yamasaki + 10 more
Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.
- Research Article
1
- 10.30699/ijbd.16.1.49
- Mar 1, 2023
- Iranian Journal of Breast Diseases
- Parisa Bazsefidpar + 4 more
Introduction: Breast cancer is a prevalent disease that has not been entirely treated by chemotherapy. This study attempted to investigate the effect of the cytotoxicity of Schiff bases derived from platinum (II) on the breast cancer cell line (SKBR3) and the expression of genes involving molecular pathways.
- Research Article
7
- 10.3390/ma16041470
- Feb 9, 2023
- Materials
- Nikita Navolokin + 7 more
Flavonoid-containing Gratiola officinalis extract has been studied in relation to breast carcinoma and human cervical cancer cells in encapsulated and native form. Encapsulation was realized in polymer shells, which were formed by the layer-by-layer method using sequential adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the destructible cores. The extract was prepared by the author's method and characterized using high performance liquid chromatography. By means of optical and fluorescent microscopy, cell changes under the action of pure and encapsulated extracts were comprehensively studied, and statistical analysis was carried out. Cells were stained with propidium iodide, acridine orange, and Hoechst 33258. A fluorescence microscope with a digital video camera were used for cell imaging. The encapsulated extract caused 100% death of breast cancer SKBR-3 cells and 34% death of cervical cancer HeLa cells and prevented the formation of autophagosomes in both cultures. Analysis of the viability and morphological features of tumor cells under the action of microencapsulated extract allows us to consider microencapsulation as an effective strategy for delivering Gratiola officinalis extract to tumor cells and a promising way to overcome the protective autophagy.
- Research Article
- 10.3724/abbs.2023004
- Feb 1, 2023
- Acta biochimica et biophysica Sinica
- Peiyan He + 12 more
<p indent="0mm">Squamocin, an annonaceous acetogenin isolated from plants in the <italic>Annonaceae</italic> family, has antitumour activity. In this study, we report that Sq-2, a biotinylated squamocin monomer, has a favorable antitumour effect on MDA-MB-231 and SKBR3 breast cancer cells <italic>in vitro</italic>. MTT assays show that Sq-2 has a better antitumour effect on MDA-MB-231 cells than Sq-5 and Sq-6. Furthermore, RNA-Seq and KEGG enrichment analyses reveal that Sq-2 activates the MAPK signaling pathway, and results of western blot analysis demonstrate that Sq-2 activates the JNK and p38 pathways in MDA-MB-231 and SKBR3 cells. Flow cytometry and western blot analysis reveal that Sq-2 induces cell apoptosis by increasing the expressions of cleaved Caspase-3 and cleaved PARP as well as the ratio of Bax/Bcl-2. Inhibition of the Caspase family by Z-VAD-FMK attenuates the viability of MDA-MB-231 cells, indicating that Sq-2 induces apoptosis in a Caspase-dependent manner. Additionally, pretreatment with the p38 inhibitor SB203580 or JNK inhibitor SP600125 partially reverses the increase in the apoptosis rate and decrease in cell viability prompted by Sq-2. Furthermore, Sq-2 treatment decreases the expression level of CyclinD1 and increases the expression levels of p21, p27, CyclinA1, and CDK2, causing S-phase arrest in MDA-MB-231 and SKBR3 cells. Further study indicates that Sq-2 stimulates autophagy in MDA-MB-231 and SKBR3 cells, and inhibition of autophagy by bafilomycin A1 increases cell viability and promotes cell survival. Sq-2, a novel biotin-squamocin compound, shows a significant inhibitory effect on the propagation of SKBR3 and MDA-MB-231 breast cancer cells. Furthermore, Sq-2 treatment not only induces S-phase arrest and activates the JNK and p38 pathways to trigger apoptosis but also causes autophagy to promote apoptosis in MDA-MB-231 and SKBR3 cells. </p>.
- Research Article
4
- 10.1039/d3dt02552g
- Jan 1, 2023
- Dalton Transactions
- Arunachalam Abirami + 4 more
Breast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion. Solution stability studies using UV-Vis spectroscopy evidenced the instantaneous hydrolysis of the complexes to form monoaquated species in a solution of 1 : 9 (v/v) DMSO/phosphate buffer. All the complexes were screened for their in vitro antiproliferative activities against different human breast cancer cells, including MCF-7, SkBr3, MDA-MB-468, MDA-MB-231, and non-cancerous HEK-293 cells, by an MTT assay, and they displayed good cancer cell growth inhibitory capacity with low IC50 values. Notably, complexes 2 and 5 comprising methoxy and p-cymene groups exhibited excellent cytotoxicity towards SkBr3 cells compared to clinical drug cisplatin. AO-EB and HOECHST-33342 staining assays revealed apoptotic morphological changes in complex-treated cancer cells. Further, reactive oxygen species and mitochondrial membrane potential assays validated that the complexes induce apoptotic cell death via an intrinsic mitochondrial pathway with ROS production. In addition, the apoptotic induction and the quantification of late apoptosis were established with the aid of western blot and flow cytometry analysis, respectively.
- Research Article
- 10.1007/978-1-0716-3203-1_18
- Jan 1, 2023
- Methods in molecular biology (Clifton, N.J.)
- Mireia Bernuz + 5 more
The analysis of the receptors on the surface of the cell-secreted vesicles provides valuable information of the cell signature and may also offer diagnosis and/or prognosis of a wide range of diseases, including cancer.Due to their low concentration, conventional procedures for extracellular vesicle (EV) detection usually require relatively large sample volumes, involving preliminary purification or preconcentration steps from complex specimens. Here, we describe the separation and preconcentration in magnetic particles of extracellular vesicles obtained from cell culture supernatants from MCF7, MDA-MB-231, and SKBR3 breast cancer cell lines, human fetal osteoblastic cell line (hFOB), and human neuroblastoma SH-SY5Y cell line, as well as exosomes from human serum. The first approach involves the covalent immobilization for the exosomes directly on micro (4.5μm)-sized magnetic particles. The second approach is based on tailored magnetic particles modified with antibodies for further immunomagnetic separation of the exosomes. In these instances, micro (4.5μm)-sized magnetic particles are modified with different commercial antibodies against selected receptors, including the general tetraspanins CD9, CD63, and CD81 and the specific receptors (CD24, CD44, CD54, CD326, CD340, and CD171). The magnetic separation can be easily coupled with downstream characterization and quantification methods, including molecular biology techniques such as immunoassays, confocal microscopy, or flow cytometry.
- Research Article
5
- 10.1021/acs.bioconjchem.2c00454
- Nov 16, 2022
- Bioconjugate Chemistry
- Kalyani Thakur + 9 more
The complex social ecosystem regulates the spectrum of human behavior. However, it becomes relatively easier to understand if we disintegrate the contributing factors, such as locality and interacting partners. Interestingly, it draws remarkable similarity with the behavior of a residue placed in a social setup of functional groups in a protein. Can it inspire principles for creating a unique environment for the precision engineering of proteins? We demonstrate that localization-regulated interacting partner(s) could render precise and traceless single-site modification of structurally diverse native proteins. The method targets a combination of high-frequency Lys residues through an array of reversible and irreversible reactions. However, excellent simultaneous control over chemoselectivity, site selectivity, and modularity ensures that the user-friendly protocol renders acyl group installation, including post-translational modifications (PTMs), on a single Lys. Besides, it offers a chemically orthogonal handle for the installation of probes. Also, a purification protocol integration delivers analytically pure single-site tagged protein bioconjugates. The precise labeling of a surface Lys residue ensures that the structure and enzymatic activities remain conserved post-bioconjugation. For example, the precise modification of insulin does not affect its uptake and downstream signaling pathway. Further, the method enables the synthesis of homogeneous antibody-fluorophore and antibody-drug conjugates (AFC and ADC; K183 and K249 labeling). The trastuzumab-rhodamine B conjugate displays excellent serum stability along with antigen-specific cellular imaging. Further, the trastuzumab-emtansine conjugate offers highly specific antiproliferative activity toward HER-2 positive SKBR-3 breast cancer cells. This work validates that disintegrate theory can create a comprehensive platform to enrich the chemical toolbox to meet the technological demands at the chemistry, biology, and medicine interface.
- Research Article
- 10.55549/epstem.1192301
- Oct 20, 2022
- The Eurasia Proceedings of Science Technology Engineering and Mathematics
- Muhammad Safdar + 1 more
The aim of this study was to make de novo gold nanoparticles (Au(0)NPs) that turn on p53 and turn off NF-kB signaling in SKBR3 breast cancer cells. The chemical method was used to make the erythromycin-based Au(0)NPs. Authentic techniques were used to figure out what these Au(0)NPs were like. In the end, relative gene expression studies were used to treat SKBR3 breast cancer cells with these Au(0)NPs as a nanomedicine. When Au(0)NPs were present, the levels of caspases 3, 8, and 9 changed, p53 was turned on, and NF-kB was turned off at the same time. Compared to normal breast cells, the number of breast cancer cells (SKBR3) that could live was cut down (CRL-4010). Gene expressions of caspases also showed that the data were correct. When AuNPs were used to treat breast cancer cells, it was found that p53 and NF-kB had the opposite relationship. The study laid out a first step for using newly made AuNPs as a chemotherapeutic agent to treat SKBR3 cells.