To address the challenges of cross-city travel for different types of electric vehicles (EV) and to tackle the issue of rapid charging in regions with weak power grids, this paper presents a strategic approach for locating and sizing highway charging stations tailored to such grid limitations. Initially, considering the initial EV state of charge, a path-demand-based model for EV charging station location–allocation is proposed to optimize station numbers and enhance vehicle flow, which indicates the passing rate of vehicles. Subsequently, a capacity configuration model is formulated, integrating wind, photovoltaic, storage, and diesel generators to manage the stations’ load. This model introduces a new objective function, the annual comprehensive cost, encompassing installation, operation, maintenance, wind and solar curtailment, and diesel generation costs. Simulation examples on north-western cross-city highways validate the efficacy of this approach, showing that the proposed wind–solar storage fast-charging station site selection and capacity optimization model can effectively cater to diverse electric vehicle charging demands. Moreover, it achieves a 90% self-consistency rate during operation across various typical daily scenarios, ensuring a secure and economically viable operational performance.
Read full abstract