Objective: To analyze the report content, the methods and results of prenatal diagnosis of high risk of sex chromosome aneuploidy (SCA) in non-invasive prenatal testing (NIPT). Methods: A total of 227 single pregnancy pregnant women who received genetic counseling and invasive prenatal diagnosis at Drum Tower Hospital Affiliated to the Medical School of Nanjing University from January 2015 to April 2022 due to the high risk of SCA suggested by NIPT were collected. The methods and results of prenatal diagnosis were retrospectively analyzed, and the results of chromosome karyotype analysis and chromosome microarray analysis (CMA) were compared. The relationship between NIPT screening and invasive prenatal diagnosis was analyzed. Results: (1) Prenatal diagnosis methods for 277 SCA high risk pregnant women included 73 cases of karyotyping, 41 cases of CMA and 163 cases of karyotyping combined with CMA, of which one case conducted amniocentesis secondly for further fluorescence in situ hybridization (FISH) testing. Results of invasive prenatal diagnosis were normal in 166 cases (59.9%, 166/277), and the abnormal results including one case of 45,X (0.4%, 1/277), 18 cases of 47,XXX (6.5%, 18/277), 36 cases of 47,XXY (13.0%, 36/277), 20 cases of 47,XYY (7.2%, 20/277), 1 case of 48,XXXX (0.4%, 1/277), 20 cases of mosaic SCA (7.2%, 20/277), 5 cases of sex chromosome structural abnormality or large segment abnormality (1.8%, 5/277), and 10 cases of other abnormalities [3.6%, 10/277; including 9 cases of copy number variation (CNV) and 1 case of balanced translocation]. Positive predictive value (PPV) for SCA screening by NIPT was 34.7% (96/277). (2) Among the 163 cases tested by karyotyping combined with CMA, 11 cases (6.7%, 11/163) showed inconsistent results by both methods, including 5 cases of mosaic SCA, 1 case of additional balanced translocation detected by karyotyping and 5 cases of additional CNV detected by CMA. (3) NIPT screening reports included 149 cases of "sex chromosome aneuploidy"(53.8%, 149/277), 54 cases of "number of sex chromosome increased" (19.5%, 54/277), and 74 cases of "number of sex chromosome or X chromosome decreased" (26.7%, 74/277). The PPV of "number of sex chromosome increased" and "number of sex chromosome or X chromosome decreased" were 72.2% (39/54) and 18.9% (14/74), respectively, and the difference was statistically significant (χ2=34.56, P<0.01). Conclusions: NIPT could be served as an important prenatal screening technique of SCA, especially for trisomy and mosaicism, but the PPV is comparatively low. More information of NIPT such as the specific SCA or maternal SCA might help improving the confidence of genetic counseling and thus guide clinic management. Multi technology platforms including karyotyping, CMA and FISH could be considered in the diagnosis of high risk of SCA by NIPT.
Read full abstract