In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier-Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics.
Read full abstract