The satellite-borne SAR image intelligent processing system needs to process on-orbit real-time imaging and various tasks of applications, for which reason designing a dedicated high-efficient single-chip multi-processor is of prioritized necessity that can simultaneously satisfy requirements of real-time and low power consumption. Aiming at on-chip data organization and memory access structure, two typical models of SAR(synthetic aperture radar) imaging CSA (chirp scaling) and neural network VGG-11 are analyzed, and then a collaborative computing model for the intelligent processing on remote sensing is extracted. A strip Tile data processing scheme and a dedicated multi-processing architecture is not only proposed, but a data organization and a caching strategy of Tile space synchronization splicing is also presented. In addition, the designed data caching structure among the processing units greatly reduces off-chip access memory bandwidth while supporting parallel pipeline execution of multi-task model. The chip adopts 28 nm CMOS technology featuring with merely 1.83 W of the overall power consumption, whose throughput and energy efficiency reaches 9.89TOPS and 5.4 TOPS/W, respectively. The present architecture can improve real-time performance of the on-orbit remote sensing intelligent processing platform while reducing the complexity of system designing, which is highly adaptive to differentiated expansions according to different models of algorithm.
Read full abstract