Ferrite nanoparticles are increasingly produced and exploited as adsorbents for environmental pollutants. However, their impact on the aquatic microbiota such as cyanobacteria, are not yet investigated. Targeting the environmental monitoring context, in this paper we explored for the first time if any change in the carotenoid signal from cyanobacteria Coelomoron pussilum (AICB 1012) exposed to non-lethal doses of Mn and Zn doped ferrite nanoparticles (NPs) can be associated with the nano-aggression on single-cell level, using micro-Raman spectroscopy. UV–Vis absorption spectroscopy of the bulk culture and single-cell Raman microscopy showed that the carotenoid signal increases relative to the chlorophyll contribution upon exposure of the cells to the Mn-ferrite NPs throughout the 7 days of the experiment. The red-shift and broadening of the strongest carotenoid Raman band arising from (CC) stretching modes indicates the change of carotenoid profile towards increased amount of β-carotene in answer to the NPs stress. The increase of this band intensity relative to the fluorescence background was also observed in Zn-ferrite NPs treatment. Using a simplified and rapid sample preparation procedure, electron microscopy in both transmission and scanning modes, showed greater coverage of the cells by the stable colloidal AgNPs than by the magnetic ferrite NPs. The latter mostly clumped together rather than adhering to the cells. The combined single-cell micro-Raman tracking of physiological response of the unicellular photosynthetic microorganisms coupled with electron microscopy approach to visualise cell-NPs interaction and the extracellular polymeric substance secretion holds the promise for rapid assessment of the NPs-induced environmental stress acting on the unicellular organisms.
Read full abstract