Because of its superior mechanical and electrical insulation qualities, paramamid insulating paper is frequently used in the electrical industry. However, a significant barrier preventing it from taking a more prominent role is its low heat conductivity. This research modifies aramid by doping it with carbon nanotubes and alumina to balance its insulating qualities and increase its thermal conductivity. Materials Studio uses molecular dynamics (MD) computations to examine the thermodynamic parameters of the composite system, such as modulus, glass transition temperature, and thermal conductivity. the system's cohesive energy density, free volume fraction, mean square displacement, and other structural characteristics. The relative dielectric constant is used to calculate the insulating characteristics. The Density Functional Theory (DFT) is then used to calculate the fluctuation of the electrostatic potential with Mulliken charge on the electrical properties. According to the findings, a single doped carbon nanotube significantly raises its mechanical and thermal conductivity while completely destroying its insulation. While single alumina doping increases the insulating properties of the system and yields improved structural parameters and tighter intermolecular bonding, it has minimally positive effects on its thermal conductivity. When mixed doping is used, the system's thermodynamics will be significantly enhanced without compromising its insulating qualities.
Read full abstract