Amphipods are known as umbrella species in conservation biology that their protection indirectly protects other species. Recent hypotheses suggest a bimodal latitudinal global species richness pattern for amphipods, irrespective of species’ depth or habitat type. Phylogeographic hypotheses suggested two distinct procedures for amphipod diversification: ecological radiation and Pangea fragmentation. This study aimed to revisit the bimodal latitudinal pattern of species richness for amphipods, investigate similarities in species composition and main environmental amphipod distribution drivers regarding their depth and habitat variations. The comprehensive database was collected from open-access data and a personal sampling database from the Persian Gulf and the Gulf of Oman. After rigorous data quality controls, the final dataset comprised 1,142,416 distribution records of 6,424 accepted marine amphipod species distributed from 0 to 10,900 m depth. All the species were grouped into pelagic and benthic, shallow-water (> 200 m), and deep-sea (< 200 m). Alpha and gamma species richness and the expected number of species per 50 random samples (ES50) were calculated. Our findings showed that species richness patterns in amphipods are shaped not only by habitat types but also by depth, and they are not significantly bimodal in all groups. Also, the Beta diversity of benthic species revealed distinct diversification patterns between benthic and pelagic species. The species similarity clusters revealed a fragmentation between Gondwana and Laurasia for shallow benthic species. However, the similarity between pelagic amphipod communities is more compatible with ecological parameters. Generalized Additive Models (GAMs) highlighted that environmental variables play a significant role in species distributions, for example, temperature and chlorophyll levels were the main predictors of species richness in shallow waters. However, a complete effect of multiple environmental variables is responsible for deep-sea species gradients. These findings are crucial information to be considered when managing the species richness and establishing conservation priorities for their habitats.
Read full abstract