A core challenge in managing diabetes is predicting glycemic responses to meals. Prior work identified significant interindividual variation in responses and developed personalized forecasts. However, intraindividual variation is still not well understood, and the most accurate approaches require invasive microbiome data. We aimed to investigate (1) whether postprandial glycemic responses (PPGRs) can be predicted with limited data and (2) sources of intraindividual variation. We used data collected from 397 people with Type 1 Diabetes (T1DEXI) and 100 people with Type 2 Diabetes (ShanghaiT2DM) who wore continuous glucose monitors (CGMs) and logged meals. Using dietary, demographic, and temporal features, we predicted 2 hours PPGR, and peak 2 hours postprandial glucose rise (Glumax). We evaluated the contribution of food features (eg, macronutrients, food category) and use of personal training data and investigated intraindividual variability in responses. We achieved comparable accuracy to prior work for PPGR (T1DEXI R = 0.61, ShanghaiT2DM R = 0.72) and Glumax (T1DEXI R = 0.64, ShanghaiT2DM R = 0.73), without using invasive data like microbiome. Including food category features led to higher accuracy than macronutrients alone. Analysis of glycemic responses to duplicate meals identified time of day (PPGR: T1DEXI P < .05 for lunch, ShanghaiT2DM P < .001 for lunch and dinner) and menstrual cycle (Glumax: P < .05 for perimenstrual) as sources of variability. We demonstrate that in individuals with T1D and T2D, glycemic responses to meals can be predicted without personalized training data or invasive physiological data.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
330 Articles
Published in last 50 years
Articles published on Significant Inter-individual Variation
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
303 Search results
Sort by Recency