<?Pub Dtl=""?> Design equations and performance limits of Class-E power amplifiers at mm-waves, including the limitations imposed by active and passive devices in a given technology, are presented in this paper. A beyond nominal breakdown voltage Class-E design methodology for SiGe HBT power amplifiers is proposed to generate high output power while maintaining high Class-E efficiency. A mm-wave SiGe stacked Class-E architecture is also introduced to increase the overall voltage swing, with each series stacked device operating in the beyond nominal breakdown mode. The mm-wave beyond <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$BV_{\rm CEO}$</tex></formula> operation of SiGe HBTs has been demonstrated experimentally in an integrated 45 GHz Class-E power amplifier fabricated in a 0.13 µm SiGe BiCMOS process with 20 dBm measured output power at 31.5% peak power-added efficiency (PAE). The series stacking of mm-wave Class-E power amplifier concept is also verified by fabricating double-stacked and triple-stacked SiGe HBT power amplifiers in 0.13 µm SiGe BiCMOS process which demonstrate a measured output power of 23.4 dBm at 41 GHz with peak PAE of 34.9%. High power, highly efficient, switching power amplifier unit cells presented in this paper can facilitate realization of efficient Watt-level mm-wave digital polar transmitters.
Read full abstract