A bi-enzymatic biosensor for monitoring of dihydroxyacetone production during oxidation of glycerol by bacterial cells of Gluconobacter oxydans is presented. Galactose oxidase oxidizes dihydroxyacetone efficiently producing hydrogen peroxide, which reacts with co-immobilized peroxidase and ferrocene pre-adsorbed on graphite electrode. This mediator-based bi-enzymatic biosensor possesses very high sensitivity (4.7 µA/mM in phosphate buffer), low detection limit (0.8 µM, signal/noise = 3), short response time (22 s, 95% of steady-state) and broad linear range (0.002-0.55 mM in phosphate buffer). The effect of pH, temperature, type of buffer, as well as different stabilizers (combinations of a polyelectrolyte and a polyol) on the sensor performance were carefully optimized and discussed. Dihydroxyacetone produced during a batch conversion of glycerol by the pectate-immobilized bacteria in an air-lift reactor was determined by the biosensor and by reference spectrophotometric method. Both methods were compared and were in a very good correlation. The main advantage of the biosensor is a very short time needed for sample analysis (less than 1 min).
Read full abstract