We present experimental and theoretical results on the electrorheological response and microstructure of colloidal suspensions composed of silica nanoparticles dispersed in a silicon oil, as a function of electric field strength and silica water content. Using small-angle neutrons scattering experiments, we determined the evolution of the static structure factor of the suspensions when an electric field is applied. Experimental data were fitted with model calculations using the Percus-Yevick solution for Baxter's hard-sphere adhesive potential. The obtained stickiness parameter is directly related to the polarization interactions that depend on the water content of silica particles. The influence of the polarization interparticle potential on the rheology of the silica dispersions was investigated in a second time. A microscopic theory for the shear viscosity of adhesive hard-sphere suspensions was successfully used which describes the steady shear viscosity of suspension in terms of the fractal concept.
Read full abstract