Generally, artificial ground freezing (AGF) technology is utilized to guarantee tunnel safety during construction. However, the soil structure changes significantly after freeze-thaw, resulting in uneven deformation of the tunnel under traffic loading from subway vibration. To solve this problem effectively, it is necessary to consider the combined impact of freeze-thaw, salt, and traffic loading damage that marine soft soil must withstand simultaneously. For this reason, cyclic triaxial test and NMR test were performed on the silty clay saturated with NaCl solution in this study. The influence of three main factors on dynamic properties has been thoroughly investigated, namely freeze-thaw, salt content, and confining pressure. According to cyclic triaxial test, the shape of the hysteresis loop of the specimens after freeze-thaw changed more significantly with increasing loading cycles. The dynamic elastic modulus was weakened by freeze-thaw, while improved by the addition of NaCl. Damping ratio was consistent with the dynamic elastic modulus law. It was worth noting that the different freezing temperatures (−10 °C, −20 °C and − 30 °C) had only a slight impact on dynamic elastic modulus, as well as damping ratio. Mathematical models were proposed to forecast the dynamic elastic modulus and damping ratio regarding marine soft clay. NMR test indicated that the addition of salt made the internal pore environment of the specimens tend to be consistent and enhanced the water-solid interaction. The increase in porosity resulted in the decrease in dynamic elastic modulus. The results have provided valuable insights into the mechanical characteristics of marine soft clay when AGF technology is applied.
Read full abstract